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Regional climate models (RCMs) have been developed and extensively applied for dynamically
downscaling coarse resolution information from different sources, such as general circulation
models (GCMs) and reanalyses, for different purposes including past climate simulations and
future climate projection. Thus far, the nature, the methods, and a number of crucial issues
concerning the use of dynamic downscaling are still not well understood. The most important
issue iswhether, and if so, underwhat conditions dynamic downscaling is really capable of adding
more information at different scales compared to the GCM or reanalysis that imposes lateral
boundary conditions (LBCs) to the RCMs. There are controversies regarding the downscaling
ability. In this reviewpaperwe present several factors that have consistently demonstrated strong
impact on dynamic downscaling ability in intraseasonal and seasonal simulations/predictions and
future projection. Those factors include setting of the RCM experiment (e.g. imposed LBC quality,
domain size and position, LBC coupling, and horizontal resolution); as well as physical processes,
mainly convective schemes and vegetation and soil processes that include initializations,
vegetation specifications, and planetary boundary layer and surface coupling. These studies
indicate that RCMs have downscaling ability in some aspects but only under certain conditions.
Any significant weaknesses in one of these aspects would cause an RCM to lose its dynamic
downscaling ability. This paper also briefly presents challenges faced in current RCM dynamic
downscaling and future prospective, which cover the application of coupled ocean–atmosphere
RCMs, ensemble applications, and future projections.
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1 . Introduction

Although regional climate models (RCMs), which evolved
from mesoscale atmospheric models, have been applied for
dynamic downscaling since the late 1980s (e.g., Dickinson et al.,
1989; Giorgi and Bates, 1989; Kida et al., 1991; Juang and
Kanamitsu, 1994; Bosilovich and Sun, 1999; Leung and Ghan,
1999; Laprise et al., 2000; Liang et al., 2001; Xue et al., 2001;
Castro et al., 2005), the extensive applications of this approach
have taken place only during the last decade. Today, this
approach is widely applied not only for downscaling past
climate, but also for future climate projection and many other
applications such as producing high resolution data for
hydrological assessments (e.g., Shukla and Lettenmaier, 2013).
In these types of studies, the lateral atmospheric boundary
conditions (LBC), the initial surface conditions, and some
surface boundary conditions, such as sea surface temperature
(SST) and sea ice, for the RCM are provided by the analysis of
observational data (e.g., Laprise et al., 2000), atmospheric
general circulationmodels (AGCMs, e.g.; Dickinson et al., 1989),
coupled atmosphere–ocean GCMs (AOGCM, e.g.; Liang et al.,
2008), or reanalysis data sets (e.g., Xue et al., 2001), such as the
NCEP–NCAR Global Reanalysis (Kalnay et al., 1996). For
simplicity, we use the abbreviation “GCM” for “AGCM” in this
paper. As RCMs become more extensively applied for down-
scaling studies, it is important to understandwhether and, if so,
under what conditions the dynamic downscaling is really
capable of improving simulation/prediction and/or adding
more climate information at different scales compared to the
GCM or reanalyses that impose LBCs to the RCM (e.g., Denis et
al., 2002; Castro et al., 2005; Xue et al., 2007). The assumption
behind such applications is that the RCM should at least
reproduce the large scale characteristics of the GCM results or
reanalyses which drive the RCMs and add more information at
different, especially finer, scales. However, there are wide gaps
between our understanding of this issue and the demands
to apply dynamic downscaling for many applications. Some
studies have suggested that some RCMs' applications seem
beyond their real downscaling ability (e.g., Pielke and Wilby,
2012; Pielke, 2013; Mearns et al., 2013). We hope that this
reviewwill provide useful information for further studies of this
problem.
Most RCMs originated from limited area mesocale models
(e.g., Dickinson et al., 1989; Juang and Kanamitsu, 1994; Xue et
al., 2001), and in most cases they actually did not conduct any
“regional climate predictions,”which is the definition of RCM in
the Glossary of Meteorology of the American Meteorological
Society. This is in contrast to the GCM (i.e., general circulation
model), which is labeled as a “global climatemodel” onlywhen
used for climate prediction. The widely used “climate down-
scaling” concept mainly refers to “climate” statistics based on
averages of the climate system over periods of a month or
more. RCMs have been applied for various temporal scales. This
review paper focuses on intraseasonal to seasonal scales
because most RCM studies focus on these scales, with some
discussions on the interannual variability of seasonal features.
At the end of this paper, we discuss issues regarding long
term downscaling for future projection since RCMs have been
widely used for such studies recently.

One distinct advantage of RCM application is its higher
horizontal resolution, which enables the RCM to handle more
realistically certain critically important climate processes, such
as clouds and land surface processes/features (e.g., topography),
especially when RCM provides cloud-permitting resolutions to
avoid the cumulus parameterization issues. Studies have shown
that with more detailed information over mountain ranges and
coastal regions, RCMs are capable of reproducing the formation
of mesoscale phenomena (e.g., Feser et al., 2011; Di Luca et al.,
2012; Stefanon et al., 2013) as well as high resolution climate
features. For instance, it is found that the core of the summer
South American low level jet located east of the Andes is well
simulated only in the RCM; there is no noticeable jet structure in
the GCM outputs which imposed LBCs to that RCM (De Sales
andXue, 2006). Ikeda et al. (2010) also showed that in Colorado,
4-km resolution was needed to resolve elevations for correctly
simulating snow-pack in high mountains.

However, conceptually, such advantage could disappear
after development of GCMs with higher resolutions that are
becoming feasible due to ever increasing computing power.
Whether and how long the RCMs will be used will depend on
how successful the dynamic downscaling is. The high resolu-
tion GCMs in principle appear to be a useful tool for exploring
this issue. Unfortunately, thus far, there have not been many
such studies carried out with full scientific rigor. In a model
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intercomparison project, the West African Monsoon Modeling
and Evaluation (WAMME,Xue et al., 2010a; Druyan et al., 2010),
both GCMs and RCMs were employed for seasonal simulations.
The GCM results in Fig. 1a and b are from the Japan
Meteorological Administration Meteorological Research Insti-
tute (JMA MRI, Mizuta et al., 2006) GCM with about 20-km
resolution and the U.K. Meto Office HadAM3 GCM with
2.5° × 3.75° (Pope et al., 2000), respectively. The RCM down-
scaling results using the HadAm3 as LBC, which improved the
HadAM3 simulations, are shown in Fig. 1c and d. Compared
with the RCMs' simulations with 50-km resolution and
HadAM3, the high resolution JMA MRI GCM did not yield a
clear advantage in this West African monsoon simulation
(Fig. 1), suggesting that the resolution probably is not the only
factor with which the RCMs may have the advantage over
coarse resolution GCMs. Through discussing the RCM dynamic
downscaling ability, this review should provide more informa-
tion on the possible advantage of RCMs over GCMs, such as
treatment in physical processes, in regional climate studies.

Part of the difficulty in exploring the dynamic downscaling
ability issue is rooted in the lack of validation data for small
scale features (e.g., Leung et al., 2003a). Simply applying low
resolution global reanalyses as climate reference for compar-
ison is inadequate because the small scale features are absent in
the global reanalyses. Because of this data issue, Denis et al.
(2002) adopted the “Big Brother” approach, in which a
large-domain regional high resolution model was used to
Fig. 1. Simulated JJAS precipitation biases: (a) MRI GCM, (b) HadAM3 GCM, (c) RM
2010 and Xue et al., 2010a.
produce a high resolution reference dataset for evaluation as
well as a low resolution dataset after filtering high frequency
information. This filtered data set is then used to drive a nested
RCM with the same dynamic and physical processes over a
small domain.Whether the nested RCMcould regenerate those
filtered fine resolution features would be used as a criterion to
assess the RCM's dynamic downscaling ability. Although this
approach seems to solve the issue of high resolution validation
data, the nested RCM, however, only produces the features
in the driving model with the same dynamic and physical
processes, which does not necessarily represent the real world.
The RCM's dynamic downscaling will eventually be judged by
its ability to produce realistic simulations/predictions. As a
matter of fact, from the beginning of the operational weather
forecasting, the limited areamodels were intended to generate
better prediction of some rather large scale phenomena, such
as precipitation, than the imposed GCM products with, in most
cases, different dynamics and physics. Ideally, high resolution
observational data and/or regional reanalysis data should
be used to assess the RCM's dynamic downscaling ability.
However, in many cases those data are still unavailable. To
further investigate the usefulness of the dynamic downscaling,
Shukla and Lettenmaier (2013) conducted the statistical
downscaling first to the coarse resolution data that is used
for LBC and then compared the results between statistical
downscaling and dynamic downscaling with the reference
data. This approach more adequately assesses the value of
3 RCM, (d) PRECIS RCM. Unit: mm day−1. Modified based on Druyan et al.,
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dynamic downscaling because statistical downscaling requires
much less resources.

On other hand, some studies only use observational data
for comparison to demonstrate dynamic downscaling ability,
which is not sufficient. The improvement after dynamic
downscaling over the data used for LBCs is also important for
examining the dynamic downscaling ability. Due to lack of data
and lack of established procedures for assessing the dynamic
downscaling ability, in quite a number of studies that are
reviewed in this paper, only results from sensitivity experi-
ments are presented. Those studies only demonstrate the
sensitivity of dynamic downscaling ability to certain factors/
processes, and do not necessarily mean that they can add value
to dynamic downscaling. We include these studies in this
review paper, however, because the dynamic downscaling
issue has not been comprehensively investigated and we wish
that this review stimulates more investigation with proper
data for evaluation and methods to explore whether these
factors really help improve dynamic downscaling ability.

In this review paper, we will present several factors that
have consistently demonstrated strong impact on the dynamic
downscaling ability, such as imposed LBCs, domain size, and
horizontal resolution, as well as physical processes, such as
convective scheme and vegetation and soil processes. Most
RCM results presented in this paper were obtained using
one-way nesting, i.e., the RCM has no feedback to the GCM.
There are fewpapers studying the two-waynesting issues (e.g.,
Chen et al., 2010), but we will not cover the two-way nesting
experiments here.

2. Lateral boundary conditions (LBC)

2.1. LBC Quality

Because RCMs are driven by LBCs and their simulations are
also affected by the initial conditions, the impact of LBCs and
initial conditions on dynamic downscaling is the primary issue
in dynamic downscaling studies and the natural approach is to
JJ
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Fig. 2. Maps of distributional similarity for the daily time series of ERA-40 and NCEP–N
from yellow to black indicates increasing dissimilarity. Grid boxes with spurious distri
select the “best” data as LBCs (e.g., Jacob and Podzun, 1997;
Racherla et al., 2012). Although there are numerous tests with
different reanalysis data, which are considered as better LBCs
compared to those produced by GCMs, there is no single
reanalysis data set yielding the best results in every region and/
or every season. For example, in an East Asian summer
monsoon study (Yang et al., 2012b), the Weather Research
and Forecast (WRF)modelwith the ARWdynamics core forced
by three reanalysis datasets (NCEP-R2, Kanamitsu et al., 2002;
ERA-40, Uppala et al., 2005; and JRA-25, Onogi et al., 2007)
showed remarkably different results in summer seasonal mean
precipitation and geopotential height at 850 hPa, primarily
caused by differences in the lateral boundary moisture fluxes
over the Bay of Bengal and the Philippine Sea. Only the
ensemble mean of NCEP-R2, ERA-40, and JRA-25 as LBCs
considerably reduced the biases in the model simulation.

Significant differences in reanalysis moisture fields are
reported in another studywith amore systematic evaluation of
the quality of the reanalysis data sets (Brands et al., 2012),
which assessed the similarity of middle-tropospheric variables
from 40-year ERA-40 and NCEP–NCAR reanalysis data on a
daily time scale. For estimating the spatial dissimilarity,
different statistical methods were employed. Fig. 2 displays
the spatial differences between ERA-40 and NCEP/NCAR
reanalysis 1 for all June–July–August (JJA) and December–
January–February (DJF) days between 1980 and 2000. Dissim-
ilarities are measured by the statistic of the two-sample
Kolmogorov Smirnov Test (KS-statistic). Grid boxes with
spurious distributional differences (alpha = 0.05) are whit-
ened. The p-value of the KS-statistic is calculated upon the
effective sample size of the daily time series (which are serially
correlated). In this global similarity maps for each variable
under study, it was found that significant dissimilarities for
specific humidity existed in many regions of the world,
especially over the tropical and subtropical oceans. Those
discoveries are consistent with Yang et al.'s results (2012b).
Moreover, these differences not only occurred in themean, but
also in higher-order moments.
CAR Z, T, and Q in DJF (top panel) and JJA (bottom) at 850 hPa. Color darkening
butional differences are whitened. Modified based on Brands et al. (2012).

image of Fig.�2
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Since the reanalysis data normally consist of bias, anomaly
nesting has been introduced for LBC coupling (Juang and
Kanamitsu, 1994). However, a North American monsoon study
revealed that the bias corrections associated with anomaly
nesting should be usedwith caution. For instance, it may not be
appropriate to correct monthly and diurnal variability errors
when the correction is applied to the seasonal average (Chan
and Misra, 2011).

The regional reanalysis data, such as the NCEP North
American Regional Reanalysis (NARR, Mesinger et al., 2006),
which provides products with higher resolution and better data
quality, have recently been applied for dynamic downscaling. A
North American regional dynamic downscaling study (Xue et al.,
2007) shows that although the RCM's simulation with NARR as
LBCs clearly showed better results in monthly and seasonal
means of precipitation and power spectrums of precipitation
and total kinetic energy compared with those using the global
reanalysis, Reanalysis II (Kanamitsu et al., 2002), the RCM
actually failed to add value in precipitation after downscaling
compared with NARR, which may imply a limit of dynamic
downscaling. No data are available to assess the downscaling
ability for other atmospheric fields when NARR is used as LBC
since the NARR has been considered as the best “real” data with
the highest resolution. In a “Big Brother” type of North American
regional winter season study focusing on precipitation, specific
humidity, and zonal wind (Diaconescu and Laprise, 2013), it is
found that if an RCM is driven by a relatively high resolution
GCM(Big Brother)with small errors, no improvement is found at
the large scales simulated by the RCM. The added value will be
solely in the RCM-simulated small scales that are not present
in the driving GCM fields. If an RCM is driven by a very low
resolution GCM (Big Brother) presenting large errors, then
important reduction of errors at large scales is sometimes
possible when the domain is sufficient large. High resolution
RCMs appear to have some skill at recovering part of the
amplitude deficient patterns, in both the stationary and the
transient components. When the GCMs are applied for LBC,
although high resolution input probably is preferred (e.g.,
Dimitrijevic and Laprise, 2005), some studies (e.g., Amengual et
al., 2007) show that there is no clear benefit in using a high
resolution GCM as LBCs when large errors are present in the
GCM.

2.2. LBC coupling

In addition to LBC data selection, the coupling of an RCM
and the LBCs can also be an important issue in dynamic
downscaling. Different RCMs have different coupling strate-
gies and numerical approaches. In the Eta model and NCEP's
WRF/NMM dynamical core (Janjic et al., 2001, 2010; Janjic,
2003), the values of atmospheric variables along the 2nd
outermost line of grid points (“inner boundary”) are defined
as horizontal four-point averages, thus being an average of
the prescribed or extrapolated values on the outermost line
and values on the third outermost line of points, which are
fully predicted (Mesinger and Janjic, 1974; Mesinger, 1977).
Probably more important than the four-point averaging for
dynamic downscaling is that a simple first order upstream
semi-Lagrangian scheme is used in three rows along the
boundaries starting from the third outermost line (e.g. Janjic
et al., 2010). In addition to taking care about well-posedness
of the advection process, the upstream advection scheme
heavily damps small scale noise in this transitional area
between the boundaries and the interior of the domain. In
many other RCMs, the relaxation and diffusive boundary
condition terms are gradually applied to several outermost
grid point rows; i.e., using a weighting function to the
prescribed LBC that is equal to one at the border of the
domain and linearly decreasing to zero at the most inner grid
point (e.g., Davis, 1976; Anthes et al., 1987). To avoid sharp
transition from the model solution to the driving boundary
fields and to reduce the noise produced by the LBCs, a buffer
zone of at least 10 grid points is commonly used in many
RCMs, and large domains may require broader buffer zones
(e.g., Giorgi and Mearns, 1999). Zhong et al. (2010) inves-
tigated the effects of buffer zone size on regional climate
simulation by performing a number of experiments using
RegCM3 with the buffer zone size expanding outward, i.e.,
keeping the internal domain size the same, to study an
abnormal flooding event in China in summer of 1998. They
found that a broader buffer zone is only favorable to low
frequency (large scale) circulation systems in the upper
troposphere, and that it is not effective in reproducing
circulations in the middle and lower troposphere and the
precipitation distribution. They speculate that physical pro-
cesses seem more important than the buffer zone size for
reproducing the details of precipitation.

2.3. Re-initialization and LBC coupling interval

The sensitivity of the RCM's dynamic downscaling behavior
to re-initialization and/or the coupling time interval with LBC is
another issue under extensive investigation. There is no rule
that limits an RCM's multi-initializations. Due to the limitation
of RCMs' downscaling ability, some studies have applied
multiple initializations but still examined the climate statistics,
such as monthly and seasonal means. Studies indicate that
when the LBC data have good quality, more frequent re-
initialization and/or frequent coupling with LBCs should help
the RCM dynamic downscaling ability (e.g., Lucas-Picher et al.,
2013; Antic et al., 2006; Gao et al., 2007; Di Luca et al., 2012).
Fig. 3b shows that when the RCM is initialized only once during
the three-month integration, the simulated area-averaged
precipitation with Domain 1 (Fig. 3a) dries out after 30 days
(Xue et al., 2007). However, when the model was reinitialized
once a day, such behavior does not appear with the same
domain size (Xue et al., 2001). Lo et al. (2008) also found similar
behavior for monthly mean precipitation and atmospheric
variables in a one-year integration. In their tests, a run with a
more frequent (e.g., weekly) re-initialization outperforms that
with less frequent re-initialization (e.g., monthly). The short-
coming of frequent updating is that the surface hydrology
variables, such as soil moisture and runoff, cannot be properly
produced because they need much longer spin-up time.
Meanwhile, there seem to be optimal coupling time intervals
for different RCMs. For instance, Dimitrijevic and Laprise (2005)
found little improvement in summer simulations of precipita-
tion, surface temperature, sea level pressure, and 500-hPa
vorticity field by reducing the LBC input time interval from 6 h
to 3 h with the Canadian RCM. Fang et al. (2010) found that a
coupling interval of 3, 6, or 12 h tended to produce more
successful simulations of precipitation, surface temperature, and



Fig. 3. (a) RCM domains, and (b) comparison of time series of observed and reanalysis precipitation and simulated precipitation with different domains. Unit: mm
day−1. Modified based on Xue et al., 2007.
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SST than if using 1 or 24 h for the Regional Integrated Envi-
ronment Model System (RIEMS).

In the RCM studies, the spectral nudging and/or LBC bias
correction has also been applied to reduce RCMs' internal
variability and/or departures between driving, i.e. LBCs, and
driven fields (e.g., Davis and Turner, 1977; von Storch et al.,
2000; Kanamaru and Kanamitsu, 2007; Cha et al., 2011; Xu
and Yang, 2012; Yoshimura and Kanamitsu, 2013; Omrani
et al., 2013; and numerous others). Because this approach
substantially changes the RCM's internal variability and
affects every factor/process that we review here, a compre-
hensive discussion on this issue is out of the scope of this
paper. We do not discuss this method here.

2.4. LBCs in sensitivity/impact study

RCMs have been widely used for sensitivity studies to test
how sensitive the model is to certain variable changes, such
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as soil moisture, and to some events, such as the impact of
aerosol deposition on snow cover. In almost every RCM
sensitivity study so far, the same LBCs are used for both control
and anomaly runs, in which the tested variables, such as soil
moisture, are changed from the control run. As discussed in the
Introduction, the RCMs are designed to preserve the large
scale circulation features in imposed LBCs and to add more
information at different, especially finer, scales. The same LBC
would hamper the development of the perturbation produced
in the anomaly run because the imposed LBC tries to reinstall
the climate in the control run. In a recent study (Xue et al.,
2012), which explored the impact of spring subsurface soil
temperature (SUBT) anomaly in the Western U.S. on Southern
Great Plain summer precipitation using the Eta model, it was
found that the SUBT effect on the Southern U.S. precipitation is
through Rossby wave eastward propagation in westerly mean
flow. In addition, the steering flow also contributed to the
dissipation of perturbation in the northeastern U.S. and its
enhancement in southeastern U.S. The adequate Eta results for
the SUBT anomaly, which were compatible with the observed
anomaly, however, were obtained only when the Eta model's
control or anomaly runwas driven by the correspondingGCM's
control or anomaly run, respectively; i.e., the GCM control run
and anomaly run were conducted first, then their results were
used for the RCM control and anomaly runs' LBC, respectively.
When the same reanalysis data were applied for both (control
and anomaly) Eta runs' LBCs, the observed precipitation
anomalies could not be properly produced (See Fig. 7 in Xue
et al., 2012).

In some cases, the anomaly run in the sensitivity study
produces a strong local perturbation, which generates strong
anomaly signals despite the inconsistencies causedby the same
LBCs. However, when the main pathway for the perturbation
developing is through modified large scale circulation, the
imposition of the same LBCs seems to hamper the necessary
modification in the anomaly run at large scales, especially
when the anomaly forcing is not that strong. Therefore, we
believe that it is necessary to introduce the “anomaly
downscaling” concept, in which the focus is on how the
anomalies in the GCMs are downscaled in the RCM's control
and anomaly runs. This issue should be comprehensively
studied since more and more RCM applications are used for
impact studies with different scenarios, such as land use land
cover changes.

3. Domain size, domain position, and resolution

Domain size and domain position significantly affect
dynamic downscaling ability for precipitation and atmospheric
variables (e.g., Jacob and Podzun, 1997; Vannitsem and Chomé,
2005; Alexandru et al., 2007). When the domain size becomes
big, the internal variability of the model also becomes large,
such that there ismore possibility for an RCM to drift away from
the LBCs' climatology. Fig. 3a shows three Eta RCMdomains over
North America and Fig. 3b shows the time series of precipitation
produced by these three domains. With the big domain
(Domain 1 in Fig. 3a), the ensemble mean (consisting of five
cases) was able to produce the observed daily precipitation
averaged over the U.S. well only during the first 10 days
(Fig. 3b), after which the simulated time series of precipitation
showed a significant dry bias and failed to capture the major
weather events during the three-month simulation (Xue et al.,
2007). Only when the domain size gets relatively smaller
(Domain 3 in Fig. 3a), the RCM is able to capture the observed
precipitation variability. This discovery has also been confirmed
by Bhaskaran et al. (2012) in their Indian monsoon study using
the HadRM3P, which has a buffer zone with a width of eight
horizontal grids, in a 13-year simulation. The seasonal mean
hydrological cycle and intraseasonal variability of precipitation
are the subjects in this study for investigation. In addition, they
also notice that different subdomains may need different
optimal domain sizes.

However, when the domain size is too small, the LBCs may
be too dominant, such that it is hard for the RCM to correct some
improper large scale features inherited from the LBCs and to
produce adequate small scale features through interactions. It
has been found that sufficiently large domain size and fine
enough resolution were needed to simulate the essential
features of precipitation in the South Asian tropical and
monsoonal region (Leduc and Laprise, 2009). This study also
found that the larger the domain, the more transient-eddy
spectral variance could be produced; within the physical
domain, this added variance corresponds to the small scale
features that do not exist in the large scale flow driving the RCM
through the LBCs. There is a characteristic distance that the large
scale flowneeds to travel before developing small scale features.
Improper small domain size would especially hamper the full
development of local interaction in sensitivity studies. For
example, Seth and Giorgi (1998) found that using a larger
domain they produced positive feedback for soil moisture
effects, which were consistent with most soil moisture/
atmosphere interaction studies. The opposite feedback was
produced when the domain size was small (Giorgi et al., 1996).

In addition to the domain size, the domain boundary
positions can also substantially affect the results. For example,
Giorgi et al. (1996) placed the left boundary over the U.S.
Pacific coastal waters to avoid complex topography within the
boundary zone. Liang et al. (2001) used the locations of the
upper-level jet stream and low level jet to determine the
positions of northern and southern boundaries. Xue et al.
(2007) found that for the U.S. summer, the southern boundary
in the Gulf of Mexico and Caribbean Sea is most relevant when
Reanalysis II was used as LBCs. Fig. 3a shows that the main
difference between Domain 2 and Domain 3 are southern
boundary location; the model with Domain 3 showed much
better dynamic downscaling ability for the precipitation than
the model with Domain 2, whose southern boundary was
located in the Caribbean Sea and whose results showed a
serious dry bias. In fact, the southern boundary area in Domain
2 was identified as having the largest discrepancies between
different reanalyses (Fig. 2. Brands et al., 2012). Studies with
other regions also suggest that LBCs should avoid regions with
large uncertainty in reanalyses. For instance, in an East Asian
study, Gao et al. (2011) found that to improve dynamic
downscaling, the western boundary position in East Asia
should avoid the Tibetan Plateau, which was also a region
associated with high uncertainty in Fig. 2.

One of the advantages of the RCM over the GCM is its high
resolution. In general, the high resolution RCMproduces better
results than the GCM-produced LBCs (e.g., Qian and Zubair,
2010; De Sales and Xue, 2011; Caron et al., 2011). However,
such comparisonmay bemisleading because the improvement
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could be due to the better dynamic or physical treatments in
the RCMs. Using a model with the flexibility to configure the
horizontal meshing such that it can be run in both limited or
global area extent, Caron et al. (2011) found a clear improve-
ment in the realism of Atlantic tropical cyclone activity when
comparing the resolution increased from 2° using the global
area extent to 0.3° resolution using the limited domain.
Moreover, Hagos et al. (2013) also found that when they
increased their RCM's resolution from 1° to 0.2° and the nested
second domain resolution from 0.2° to 0.04°, the effect of
moisture transport by eddy fluxes could be better simulated in
their idealized regional aquaplanet simulations. Xue et al.
(2007) found that among different resolution and domain size
tests, only the RCMwith 32-km resolution (the smallest in their
experiments) in conjunctionwith appropriate domain sizeswas
able to properly simulate precipitation and other atmospheric
variables, especially humidity, over the southeastern U.S. during
all three-summer months and to produce a better spectral
power distribution than the data used for LBCs. In another study
covering the European Alpine region, compared to the 10-km
parent simulations, the convection permitting climate simula-
tions with 3-km grid spacing improved summertime precipita-
tion diurnal cycles, produced better extreme precipitation
intensities andmore accurate distribution of rain, and improved
precipitation (Prein et al., 2013). However, in a study of daily
precipitation events over the southern United Kingdom, Chan et
al. (2013) found that although increasing resolution (especially
from 50 to 12 km) improved the representation of orographic
precipitation in general, they did not see any clear evidence that
the 1.5-km simulation is superior to the 12-km simulation at the
daily level.

4. Physical processes I: convective precipitation processes

A number of studies have identified cumulus parameteriza-
tions as a crucial factor significantly affecting dynamic down-
scaling ability.Most of them focus on testing different convective
parameterizations in RCMs. Among those schemes, the Grell
scheme (Grell et al., 1994; Grell and Devenyi, 2002), which was
originally based on Arakawa and Schubert (1974); the BMJ
scheme (Betts andMiller, 1986; Janjic, 1994); and theKF scheme
(Kain and Fritsch, 1993; Kain, 2004), whichwas developed from
Fritsch and Chappell (1980); have been testedmore extensively.
All these studies intended to evaluate convective schemes'
performance in their case studies in certain regions. For instance,
using RegCM, Giorgi and Shields (1999) showed that the Grell
Scheme produces an overall more realistic regional climate over
the continental United States. Liang et al. (2004) reported that
although KF has demonstrated superiority in North American
regional climate studies, the Grell scheme has its own compel-
ling advantages over certain regions, such as the Atlantic Ocean
and the Midwest, and over certain aspects, such as the diurnal
cycle over the Great Plains. Zhu and Liang (2007) noticed that
the dominant empirical orthogonal function (EOF) mode of
the U.S. summer precipitation interannual variation, identified
with the out-of-phase relationship between the Midwest and
Southeast in observations, is reproducedmore accurately by the
Grell than the KF scheme, which largely underestimates the
variation in the Midwest. The second EOF pattern, which
describes the consistent variation over the southern part of the
Midwest and the South in observations, is captured better by the
KF scheme than the Grell, whose pattern systematically shifts
southward. Using MM5, Gochis et al. (2002) in a 1999 North
American monsoon (NAM) case found that the KF scheme
produces better vertical thermodynamic structures and hence
more realistic convective precipitation associated with NAM.
However, this result seems unsupported byXu and Small's study
(2002) on NAM intraseasonal and interannual variability also
using MM5, which found that the Grell–RRTM simulation
produces the most realistic patterns and magnitudes of rainfall,
including intraseasonal variations and the differences between
wet and dry years. Over South Africa, Ratna et al. (2013)
indicated that in WRF/ARW, the BMJ scheme seemed to re-
produce the intensity of rainfall anomalies and also exhibited the
highest correlation with observed interannual summer rainfall
variability there compared with other schemes. Due to the
development of the new general mesoscale forecast models,
such as WRF, which consist of broad selections of different
physical parameterizations, studies have combined different
cumulus schemes, radiation schemes, and planetary boundary
layer (PBL) schemes in an attempt to define the optimal
combination of physical parameterizations for certain regional
climate studies (e.g., Xu and Small, 2002; Leung et al., 2003b;
Lynn et al., 2010; Flaounas et al., 2011; Solman and Pessacg,
2012; Yuan et al., 2012). UsingMM5, Solman andPessacg (2012)
found that based on model performance in sea level pressure,
surface temperature, and precipitation simulation from October
throughNovember, no single combinationwas found to perform
the best over the entire domain and during their entire
integration period for their La Plata Basin study. Flaounas et al.
(2011) found that the PBLs seem to have the strongest effect on
the vertical distributions of temperature and humidity, and
rainfall amount, and convective schemes strongly influence
precipitation variability in their WRF/ARW simulations for the
year 2006 West African Monsoon simulation.

Efforts have been made to further examine the mechanisms
behind the discrepancies using different schemes. For example,
Liang et al. (2004) noticed that the KF scheme incorporates
detailed cloud microphysics and entrainment and detrainment
between clouds and environment, which are absent in the Grell
scheme. When convection is triggered, the KF scheme removes
all Convective Available Potential Energy (CAPE) within the
relaxation time, whereas the Grell scheme adjusts the buoyancy
toward an equilibrium state depending on the strength of
cloud-base vertical motion. The rainfall is parameterized as the
product of precipitation efficiency with integrated water vapor
and liquid flux about 150 hPa above the lifting condensation
level in the KF scheme, but with total condensate and
cloud-base mass flux in the updraft for the Grell scheme. Liang
et al. (2004) did not further examine whether and which
processes in the schemes produce the simulated differences
among these two schemes. In another study, Yang et al. (2012a)
tested five key parameters in the latest KF scheme related to the
downdraft mass flux rate, starting height of downdraft above
the Updraft Source Layer, environmental entrainmentmass flux
rate, turbulent kinetic energy (TKE) in the sub-cloud layer, and
the consumption time of CAPE, over the SouthernGreat Plains in
a June 2007simulation using the WRF/ARW. The results show
that the model bias for daily precipitation can be significantly
reduced by using five optimal parameters, especially for heavy
precipitation. The simulated precipitation and other model
variables weremore sensitive to the changes of downdraft- and
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entrainment-related parameters and consumption time of CAPE
than to the other two parameters.

It should be pointed out that these convective parameteriza-
tions were initially designed for weather forecasting. Generally,
the needs from convective parameterization overlap a lot for
weather and regional climate applications. In weather forecast-
ing theremay bemore emphasis on the timing of convection and
its intensity, while long RCM runs may expose issues of mean
behavior over tropical oceans for example for schemes that are
mostly developed for continental rainfall prediction. Some of the
parameterizations that are good at specific weather events may
not ‘score’ well in a ‘climate’ sense because they deal with
different temporal scales. Convective schemes can be retuned for
different resolutions and convective regimes, such that the
same scheme can behave differently even in the same region.
Furthermore, the schemes are often updated, so that results
obtained in one test a fewyears agomaynot be valid anymore. It
is very likely that different versions of the same scheme are used
in different studies. Therefore, it is questionable whether such
comparison to select the best package is meaningful when
simply extending a parameterization for weather forecasting
scale and making assessment based on simulation at much
longer temporal scales. Whether this is the best way to optimize
Fig. 4. Comparison of TRIM (a), reanalysis (b), and WRF/NMM simulated June 2000
schemes are shown in (c) and (d), respectively.
physical package should be further investigated. It is always
advisable, and generally done, to test long term behavior of
weather-application-produced convective schemes.

We find that significant improvement in dynamic downscal-
ing can be achieved by properly adjusting convective parame-
terizations for the dynamic downscaling region and resolution
used. Fig. 4c shows that WRF–NMM with the BMJ scheme
produces extreme high convective precipitation over the ocean
near the West African coast. Although the BMJ convective
scheme works well at mid-latitudes, it seems that due to
abundant moisture supply over the warm tropical ocean, low
level convergence produces convection and latent heat release
and further enhances the convergence, producing a positive
feedback. We made several changes in the BMJ convection
scheme for this region, including the addition of dry air
entrainment during parcel ascent and the modification of
entropy calculation. We also reduced the values of dry saturated
pressure deficit (DSP) at the cloud base, freezing level, and cloud
top, which were used to generate humidity reference profiles of
DSP over water, in an attempt to reduce deep convection
over the ocean. Fig. 4d shows significant improvement in the
precipitation simulation over ocean. This and Yang et al.'s study
(2012b) all show that propermodifications of parameter(s)may
precipitation (mm day−1). The results from original and modified convective
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be necessary when extending these convection schemes to long
time studies and applying RCMs for different climate zones and
with different resolutions, which could be one of the advantages
of RCMs over GCMs, where a single parameterization set-up is
commonly used in their global domain so far.

5 . Physical processes II: land surface processes

5.1. Land surface parameterizations

In addition to the topographic effect, studies have also
demonstrated that vegetation and soil processes play a crucial
role in dynamic downscaling. They have been listed as one of
the major sources to generate small scale features in RCMs
(Denis et al., 2002). Although at intraseasonal and seasonal
scales, oceanic forcing may be the main source of climate
variability overmany regions, in placeswhere land–atmosphere
coupling is strong (Koster et al., 2006; Xue et al., 2004, 2006,
2010b), soil moisture and vegetation biophysical processes
could make significant contributions to dynamic downscal-
ing. Extreme climate events, such as droughts and flooding,
are an important focus in RCM land/atmosphere interaction
studies (e.g., Seth and Giorgi, 1998; Bosilovich and Sun,
1999; Zhang et al., 2003; Gao et al., 2011; Liu et al., 2013;
Stefanon et al., 2013).

In a study on the 1993 U.S. flooding, by comparing the
results from the Eta coupled with the SSiB biophysical model
(Xue et al., 1991) with those from the Bucket model without
explicit treatment of the vegetation biophysical process, the
Eta/SSiB model produced more realistic monthly mean precip-
itation over the U.S. and the flood areas, better than the
reanalysis that was used as LBCs (Xue et al., 2001). The
improvements were mainly manifested in the intensity of the
heavy rainfall. The changes were caused by different spatial
distribution and diurnal cycle of surface latent and sensible
heat fluxes between the Eta/SSiB and the Eta/Bucket simula-
tions, leading to different boundary layer evolutions and
atmospheric stability conditions, as well as low level moisture
flux convergence in the heavy rainfall areas.

Another study on the 1998 Oklahoma-Texas drought with
the NCEP Regional Spectral Model found that during April and
May 1998, SST anomalies combined with a favorable atmo-
spheric circulation to establish the drought. In June and August,
the regional positive feedback associated with lower soil
moisture/evaporation and precipitation contributed substan-
tially to the maintenance of the drought (Hong and Kalnay,
2000). However, in another East Asian study, Kim and Hong
(2007) found that the impact of soil moisture anomalies on the
simulated summer rainfall in East Asia is not significant. A
conflict between the local feedback of soil moisture and a
change in circulations associated with the summertime mon-
soonal circulation in East Asia can be attributed as a reason for
this result.

In a study exploring the mechanisms causing climate
extremes in recent years in Europe, such as the unprecedented
heat wave and serious drought in 2003 and cool summers
with heavy precipitation and devastating floods occurring in
2002 and 2005 (Seneviratne et al., 2006), it was found that
the increase in summer temperature variability predicted in
Central and Eastern Europe ismainly due to feedbacks between
soil moisture and the atmosphere. Stefanon et al. (2013)
conducted sensitivity experiments for all heat wave episodes
and found different soil moisture–temperature responses over
low elevation plains, mountains, and coastal regions. Over the
coastal regions, their results were consistent with Kim and
Hong (2007).

In addition to local effects due to land processes, indirect
effects due to remote soil subsurface temperature anomaly
have also been explored in the RCM. An Eta model study
(Xue et al., 2012) found that cold subsurface temperature
anomalies over the Western U.S. high elevation areas during
the spring could contribute to a June precipitation deficit over
the Southern U.S. During the years with warm subsurface
temperature anomaly, the anomalous cyclone induced by the
surface heating produces the rainfall in the SouthernU.S.When
the subsurface had cold anomalies in the west, this mechanism
no longer existed, which produced drought.

There is more evidence indicating that adequate soil
moisture and vegetation presentations are crucial to dynamic
downscaling. TheWRF/Noah (Chen and Dudhia, 2001) with an
interactive canopy model and a simple groundwater model
(SIMGM) shows that incorporating interactive canopy and
groundwater dynamics improves the simulation of summer
precipitation in the Central United States and plays a significant
role in enhancing the persistence of intraseasonal precipitation
(Jiang et al., 2009). The enhanced model produces more
precipitation in response to an increase in latent heat flux.
The advantage of incorporating these two components into the
model becomes more discernible after 1 month.

Snow water equivalent and snow cover were poorly
presented in the current reanalysis model (e.g., Narapusetty
and Molders, 2005; de Elia et al., 2008). Using the WRF/ARW,
Waliser et al. (2011) found that a more realistic treatment of
snow physics in a multi-layer snow model (Sun et al., 1999;
Sun and Xue, 2001) could substantially improve snow-pack
simulations in WRF compared with the single snow layer
model, especially during spring when snow ablation is
significant. Fig. 5 shows that the improvement in the WRF
simulations of snow water equivalent and snow cover extent
from the multi-layer snow model compared to a single layer
snow model during the melting season. With only one layer
snow in the WRF, the snow melting is substantially slow and
the model produces unrealistic snow amount and large special
distribution, similar to the reanalysis that imposes the LBC.
There are manymore studies exploring/evaluating the effect of
different land surface parameterizations on RCM dynamic
downscaling (e.g., Chen and Dudhia, 2001; Zeng et al., 2002,
2003; Jin and Miller, 2007; Singh et al., 2007; Alo and Wang,
2010; Barlage et al., 2010; Prabha et al., 2011; Sato and Xue,
2013) and identifying areas that are sensitive to the land/
atmosphere interactions (e.g., Zhang et al., 2008). The studies
presented above all provide useful information for improving
RCMs' dynamic downscaling at intraseasonal and seasonal
scales by improving the land representation in RCMs.

5.2. Specification of initial soil moisture and vegetation conditions

Because of the importance of land surface processes in
regional dynamic downscaling, a number of studies have
investigated the impact of specification of initial soil moisture
and land conditions from data assimilation systems and
satellite products (e.g., Pielke et al., 1997; Hong et al., 2009;
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Moufouma-Okia and Rowell, 2010; Sertel et al., 2010;
Panegrossi et al., 2011). Using high resolution soil moisture
data derived from ENVISAT/ASAR observations as the initial
conditions for the MM5 simulation of the Tanaro flood
event of April 2009, the ASAR-derived soil moisture field
shows significantly drier conditions compared to the ECMWF
analysis and significantly improved the simulation in timing
of the onset of the precipitation, as well as the intensity of
rainfall and the location of rain/no rain areas (Panegrossi et
al., 2011). Hong et al. (2009) tested the WRF/ARW model
using vegetation fraction derived from Moderate Resolution
Imaging Spectroradiometer (MODIS) reflectance data with
two different methods: linear and quadric. The model covers
the NCAR Integrated Surface Flux Facilities area, most in
the Southern Great Plains between eastern Kansas and the
Oklahoma Panhandle. With both satellite products, they
obtained improved results in sensible heat flux simulations
in the eastern area and in latent heat flux simulations in the
western and central areas.

Although there is consensus on the impact of initial soil
moisture effect in dynamic downscaling, it remains an issue
regarding which soil moisture data should be used for certain
land models. For instance, it is well known that NARR produces
better regional atmospheric features than the coarse resolution
global reanalysis over North America. However, when the NARR
soil moisture data were applied for the Eta/SSiB initialization,
the results were worse than using the NCEP global reanalysis
soil moisture data (Xue et al., 2007). The NARR used the Noah
land model to generate the soil moisture, and NCEP global
reanalysis uses a two layer soil model (Mahrt and Pan, 1984) to
produce the soil moisture data. With the complex structure
of the biophysical models, such as Noah and SSiB, the direct
transfer of soil moisture produced from one biophysical model
may not yield the optimal results when applied to another
biophysical model. When using assimilated soil moisture data,
which were derived also using the SSiB model, the WRF/SSiB
produced the best downscaling ability (Sato and Xue, 2013).
However, by and large, the differences caused by these two
initial soil moisture data sets were not as substantial when
compared with those produced by the effects of domain size,
LBC, grid spacing, and different physical parameterizations
based on the previously discussed studies.

5.3. Land–atmosphere coupling strategy

The discussions in Sections 5.1 and 5.2 have shown strong
evidence that land surface processes play a significant role in
dynamic downscaling by accounting for the exchange of
energy and water between the land and the atmosphere. The
study of Polcher et al. (1998) has suggested that a proper
land–atmosphere coupling methodology is crucial for simu-
lations of land–atmosphere interactions. Therefore, coupling
of atmosphere and surface through PBL is an important issue
in improving dynamic downscaling. However, the coupling
problem remains largely unexplored due to complex pro-
cesses involved across a range of scales and the technical
difficulties in modify the land/atmosphere interface coding.

The key for a successful implementation of land surface
processes into an atmospheric model is to ensure energy, water,
and momentum conservation at the interface between the land
surface and the atmospheric layers while solving the coupled
transport equations (Polcher et al., 1998). The changes in
temperature, humidity, and wind fields in the lower atmosphere
and temperature and soil moisture at the surface should be
consistent with the flux exchange between the interfaces.
Although this principle is simple and well known, its realization
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is a rather difficult task. Because PBL schemes and radiation
parameterizations are so different in different atmospheric
models, it is necessary to design a specific approach to implement
land models into an atmospheric model (e.g. Xue et al., 2001,
2004). Normally, the process includes modifications of both land
surface and PBL schemes. However, when we implemented the
SSiB into the WRF infrastructure, to make the WRF easy for
different parameterizations to “plug” in, in the version that we
provided for public release inNCAR, some interaction loopshad to
be simplified to avoidmodifying the PBL schemes.While some of
these processes only play secondary roles, some are more
important.

For instance, in theWRF YSU PBL scheme (Hong et al., 2006),
the friction velocity that is derived from the surface model is
furthermodified in the PBL.Whenwe implemented the SSiB into
theWRF, since the calculations of surface turbulence fluxeswere
the important components in SSiB, the adjustment of friction
velocity in PBL caused serious problems. Fig. 6 shows that with
inconsistent friction velocity in the surface layer scheme and PBL,
the simulated 200-mb zonalwind andprecipitation (not shown)
are substantially deteriorated, which suggests that the land/
atmosphere coupling plays an important role in the large scale
circulation in dynamic downscaling and deservesmore attention
in further dynamic downscaling studies.

6. Challenging issues

6.1. Downscaling ability for temporal variability

In previous sections, we mainly focused on the added
values in spatial distribution and intensity. There is, however,
very few results showing that the RCM dynamic downscaling
adds value in temporal variability. For example, in the
Multi-RCM Ensemble Downscaling of Multi-GCM seasonal
forecasts (MRED) project, RCMs produced multi-member
ensemble means of 22 winters (December to April) covering
1982 to 2003 over Part of North and Central America (from
124.75° to 60.0° W and from 24.75°N to 49.125°N with a
0.375° horizontal resolution). Compared with the NCEP
Climate Forecast System (CFS) hind-prediction, which was
used for MRED RCMs' LBCs, the UCLA–Eta RCM reduced the
precipitation bias over the contiguous US land points from
1.6 in CFS to 0.0 mm day−1 and the root-mean-square-error
from 1.9 to 0.6 mm day−1 based on GTS observations.
However, little improvement was attained with downscaling
in terms of precipitation temporal variability compared with
CFS results. In fact, the RCM's precipitation time series are
highly correlated with CFS' (the LBCs); for instance, in the
Western and Eastern U.S., where the correlation coefficients
of temporal variation of monthlymean precipitation between
the CFS and Eta are about 0.97, both models' temporal
correlation coefficients with observation are only about 0.45
(De Sales and Xue, 2013). Apparently inputs from LBCs every
six hours impose great constraints on an RCM's temporal
variability. This situation is quite consistent in many dynamic
downscaling studies, in which SST was specified from the
same data set as LBC data (e.g., Chou et al., 2002; Xue et al.,
2007; Iizuka, 2010). Imposed LBCs in a fixed time interval
greatly hamper the RCM's ability to add value in temporal
variability. We will discuss this issue further in the section on
Future Research Prospective.
6.2 . Future projection

The demands for future climate information at local-regional
scales are huge, which has led to a dramatic increase in RCM
simulations with increasingly higher resolution for future
projections. However, based on the discussions in Sections 6.1
and 2.1, the RCM is very likely to mimic the imposed GCM LBC's
trend and temporal variability, and the deficiency in GCM future
prediction will be transferred to the RCM. Knutti et al (2010)
have extensively discussed the challenges in combining
projections from multiple GCM future predictions and
concluded that extracting policy-relevant information is
difficult. Among these challenges are that model skill in
simulating present-day climate conditions is shown to
relate only weakly to the magnitude of predicted change,
and quantifying uncertainties from ensembles of climate
models is difficult. The correlation between biases among
the CMIP3 GCM is high, which makes averaging less
effective at canceling errors. In addition, averaging model
outputs may further lead to a loss of signal for extreme
situations.

When the LBC quality deteriorates in future projections, the
value of this exercise is controversial (Pielke and Wilby, 2012;
Pielke, 2013; Mearns et al., 2013). A few studies have tackled this
issue and mainly focused on surface temperature. Liang et al.
(2008) found very high spatial pattern correlations of the RCM
and GCM difference in surface temperature and precipitation
between the present and future climate simulations, which
suggests that major model deficiency in simulating present
climate would be systematically propagated into future climate
projections at regional scales. To reduce the GCM-related model
dependence of future climate projections when using RCMs,
correcting the biases in GCM-produced LBCs before running
RCMs was proposed. In a RegCM4 study with three different sets
of LBCs, which were generated with different interpolation
methods, it was found that using different LBCs produced similar
present-day summer rainfall patterns, but the predicted future
changes differ significantly depending on how the LBC bias
correction is treated (Yu and Wang, 2013). They claim that
physical inconsistencies may be contained in the bias-corrected
LBCs, increasing the uncertainties of RCM-produced future
projections. Boberg and Christensen (2012), in a central Medi-
terranean study, demonstrate that projections of intense mean
summerwarming partly result frommodel deficiencies, and after
correcting the biases, the Mediterranean summer temperature
projections in an ensemble mean are reduced by up to one
degree, on average by 10–20%. In another approach, McSweeney
et al. (2012) demonstrated the importance of employing a
well-considered sampling strategy to select GCMs used for LBCs
based on Knutti et al. (2010) and others' recommendations. They
first examine whether any GCMs should be eliminated for LBCs
because of significant deficiencies in their simulation of current
climate for that region. They then evaluate the range of the GCM
future projections and identifymodels that best represent the full
range of future climates, whichwill be used for the LBCs in future
projections. Compared with numerous publications applying the
dynamic downscaling with various applications of future projec-
tions, there are very few papers exploring dynamic downscaling
ability in future projection. More extensive researches are
required to close this gap (e.g., Chen et al., 2010; Rasmussen et
al., 2011).
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7. Discussions and future research prospects

LBCs are the driving force for RCMs and play the dominant
role in dynamic downscaling. Because of this, Pielke and his
colleagues have categorized dynamic downscaling into four
typologies based on the types of imposed LBCs; i.e., from the
analysis of observed data, reanalyses data, AGCM, or coupled
AOGCM outputs; as well as downscaling purposes, i.e., for
weather forecasting, seasonal simulation, or seasonal or climate
prediction (Castro et al., 2005; Pielke and Wilby, 2012). When
more variables in LBCs are specified based on model products
rather than observation, the uncertainty in dynamic downscaling
increases, which seriously impedes the RCM from adding
information in its dynamic downscaling. The studies reviewed
here suggest that RCMs have dynamic downscaling ability only
under certain conditions, including adequate LBCs and proper
domain setting, convective schemes, land surface parameteriza-
tions, initializations, and numerical schemes, as well as sufficient-
ly large domains. Through interactions of these processes in the
regional domain, the RCMs are able to provide added value
compared with the data used for LBCs in some aspects (e.g.,
Mariotti et al., 2011; Xue et al., 2001, 2007; Liang et al., 2004; Seth
et al., 2007; Solman and Pessacg, 2012). Any significant
weaknesses in one of these aspects would cause an RCM to lose
its dynamic downscaling ability. This is likely the reason why
RCMswhichhave different convective and radiation schemes and
land parameterizations in their models produce very different
results comparedwith thosewith different parameterizations but
only using only one single model (de Elia et al., 2008). To further
understand the dynamic downscaling issue, in further dynamic
downscaling research, the RCMs' results should not only be
compared with observational data but should also be compared
with the data used for specifying LBCs. Only comparisons
between these three data sets can adequately show whether
the RCMs really provide new information. In the following, we
further discuss several issues important to dynamic downscaling
but with less comprehensive investigation carried out so far.
7.1. Temporal variability and possible impact due to coupled
ocean–atmosphere RCMs

Recently, fully coupled atmosphere–ocean RCMs have been
used for dynamic downscaling studies (e.g., Aldrian et al., 2005;
Ren and Qian, 2005; Seo et al., 2007; Artale, et al., 2010; Ratnam
et al., 2013). In general, these studies reported an improvement
in dynamic downscaling due to coupled models. For example,
using the coupled RegCM3 and the ocean model ROMS, Ratnam
et al. (2009) showed that the coupled model captured the main
features of the Indian monsoon and simulated a substantially
more realistic spatial distribution andmonthlymeanofmonsoon
rainfall compared to the uncoupled atmosphere-only model. A
more striking feature is that in an East Asian summer monsoon
(EASM) downscaling study (Yao and Zhang, 2009), using the
coupled RegCM3 with specified SST the simulated correlation
coefficients of the temporal variation of summer rainfall between
the uncoupled model RegCM3 and observation were only 0.30
and 0.29 over the Yangtze River Valley and South China,
Fig. 6. Comparison of zonal wind (m s−1) at 200 hPa. (a) Reanalysis, (b) latest simu
same U* in SSiB and PBL schemes. Method 2 uses different U* in SSiB and PBL sche
respectively. The coefficients of the rainfall between the coupled
RegCM3 and Princeton OceanModel (POM) and observation are
0.48 and 0.61 over the Yangtze River Valley and South China,
respectively, which is a substantial improvement. Another study
(Liao and Zhang, 2013; Fang et al., 2010) showed that using the
Regional Integrated Environment Model System (RIEMS, Fu et
al., 2000) and the POM, the power spectrum of climatological
intraseasonal oscillation of EASM rainfall is better simulated in
the coupled model compared with the uncoupled model,
especially the 30–60-day oscillations. The coupled model also
showed greater skill than the uncoupled RIEMS in reproducing
the principal features of climatological intraseasonal oscillation
of EASM rainfall, including its dominant period, intensity, and
northward propagation. These studies have shownpromisewith
fully coupled ocean–atmosphere models to improve dynamic
downscaling in temporal variability for some regions where the
air–sea coupling is strong, such as East Asia, owing to the realistic
phase relationship between the intraseasonal convection and the
underlying SST resulting from the air–sea coupling. It is
important to identify regions where ocean coupling plays an
important role as done in land/air coupling study and to include
the coupled oceanmodels in these regions' downscaling studies.
Furthermore, dynamic vegetation processes have also recently
been added to RCM downscaling. It is interesting to see whether
these fully coupled surface/atmosphere systems will be adding
value in temporal variability in certain regions.
7.2. Multi-model ensemble strategy

Due to deficiency in RCMs' dynamic downscaling ability, to
provide scientifically credible information on regional climate
and climate change, a multi-RCM approach has been taken
(e.g., Druyan et al., 2010; Mearns et al., 2012; Kim et al., 2013).
Shukla and Lettenmaier (2013) analyzed MRED multi-models'
downscaling for seasonal hydrologic forecasting. They found
that the MRED forecasts produce modest performance beyond
what results from statistical downscaling of CFS. Although
the improvement in hydrologic forecasting associated with
the ensemble average of the MRED forecasts (Multi-model)
relative to statistical downscaled CFS forecasts is significant for
runoff and soil moisture forecasts with up to 3 months lead,
the region of improvement is mainly limited to parts of the
Northwest and North Central U.S.

It has been found that one or more RCMs outperform the
other RCMs as well as the ensemble mean in Shukla and
Lettenmaier's analyses (2013). Hence they argue that careful
selection of RCMs (based on their hindcast skill over any given
region) is critical for improving hydrologic forecasting using
dynamical downscaling. Kim et al. (2013) evaluated 10 RCMs'
downscaling performance for Africa covering 1989–2008 and
found that for all variables, a multi-model ensemble (ENS)
generally outperforms the individual models included in the
ENS. However, they found that model biases vary systemati-
cally for regions, variables, and metrics, posing difficulties in
defining a single representative index to measure model skill
and for choosing ensemble members. These studies suggest
that careful selection of the members with high dynamic
lation using Method 1, and (c) simulation using Method 2. Method 1 uses the
mes.
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downscaling ability for an ensemble mean is crucial to provide
real and credible information.

These ensemble studies and the results presented in
previous sections show that to improve dynamic downscaling
ability, a simple increase of the number of ensemble members
and/or trying the optimum combination of different parame-
terizations may not be a good approach, especially given that
some schemes, such as convective parameterizations, were not
designed for today's downscaling research. This review shows
that using the RCMas a black box is very unlikely to achieve the
dynamic downscaling goal and neither is a simple averaging of
the results of multiple models or optimizing the combinations
of different parameterizations. More rigid scientific analyses
and better ensemble methodology need to be developed.

7.3. High resolution needs

With GCM grid sizes reducing and computer power
increasing, the role of RCMs is now shifting to representing
finer scales that still cannot be obtained with GCMs over long
simulation times. The very fine resolution data is very useful for
hydrological and other applications. RCMs are now starting to
be run at convection-permitting scales, grid sizes less than
4 km, where cumulus parameterization can be replaced by
explicit dynamics to represent deep convective systems. This
reduces some of the parameterization uncertainty but in-
creases the role of specifics in the microphysical schemes.
Meanwhile, shallow convection still needs parameterization.
Also 4 km grids may not be fully capable of resolving updrafts
with smaller natural scales, as is found in the tropics for
example. However, there are often significant gains in the
timing and propagation characteristics of resolved convection.

Complex terrain offers another area where high resolution
regional simulations will provide future benefit. Snow-pack
climate studies (e.g. Rasmussen et al., 2011) require resolving
high elevation areas, and grid sizes less than 5 km, while
rainfall is also significantly modified by topography. RCMs will
be an important tool for water resource studies while theymay
also be coupled to hydrology models for river flow and flood
risk assessments.

Such RCMs are expensive to run for periods of years, and in
climate simulations where GCMs are run a century, the RCMs
may use a time-slicemethod driven by selected decades of GCM
output to make them affordable.

Dynamic downscaling is a scientific field and more physical
and dynamic-based approaches are extremely important,
considering its broad applications. By and large, the research
reviewed in this paper shows that substantial progress has
been made during the past two decades in understanding
dynamic downscaling; however, our understanding of the
issue is still very limited and further comprehensive scientific
research for the issues reviewed in this paper is warranted.
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